دستگاه مختصات
دو محور عمود بر هم که در یک صفحه قرار دارند ، یک دستگاه مختصات به وجود می آورند.
محور افقی را محور طول، محور عمودی را محور عرض و محل برخورد دو محور را مبدأ مختصات می نامند.
صفحه ی حاصل از دو محور مختصات را صفحه ی مختصات می گوییم.
از آن جا که دو محور مختصات بر هم عمود هستند آنرا دستگاه مختصات قائم یا دکارتی ( منسوب به دکارت ) می نامند.


1- هر نقطه که در ناحیه ی اول قرار گیرد ، طول و عرضش مثبت است.
2- هر نقطه که در ناحیه ی دوم قرار گیرد ، طول منفی و عرض مثبت است.
3- هر نقطه ای که در ناحیه ی سوم قرار گیرد ، طول و عرضش منفی است.
4- هر نقطه ای که در ناحیه ی چهارم قرار گیرد طول مثبت و عرض منفی است.
5 – هر نقطه ای که روی محور طول قرار گیرد ، عرضش صفر است.
6 – هر نقطه ای که روی محور عرض قرار گیرد ، طولش صفر است.
مثال Å اگر نقطه روی محور طول باشد، مقدار a را بدست آورید .
حل: هر نقطه روی محور طول ، عرض آن صفر است پس:

|
انتقال: (translation )
انتقال به معنی جابه جا شدن، از جایی به جای دیگر رفتن، نقل کردن، کوچیدن، کوچ کردن و مردن و در گذشتن می باشد.
در ریاضی انتقال یعنی تغییر مکان، اندازه و جهت مشخص. برداری که شکل را در مسیر مشخص انتقال می دهد، بردار انتقال می نامند.


1 - هر برداری که موازی محور طول باشد ، عرض آن صفر است .
2 – هر برداری که موازی محور عرض باشد ، طول آن صفر است .
3 – قرینه نقطه ی
نسبت به محور طول نقطه ی
است .
4 - قرینه نقطه ی
نسبت به محور عرض نقطه ی
است .
5 -قرینه نقطه ی
نسبت به مبدأ مختصات نقطه ی
است .

6 - قرینه نقطه ی
نسبت به نیمساز ناحیه ی اول و سوم نقطه ی
است .
7 - قرینه نقطه ی
نسبت به نیمساز ناحیه ی دوم و چهارم نقطه ی
است .

:: بازدید از این مطلب : 892
|
امتیاز مطلب : 22
|
تعداد امتیازدهندگان : 7
|
مجموع امتیاز : 7